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In this paper, we consider the optimisation of a time varying scalar field by a network of agents with no
gradient information. We propose a composite control law, blending extremum seeking with formation
control in order to converge to the extrema faster by minimising the gradient estimation error. By
formalising the relationship between the formation and the gradient estimation error, we provide a
novel analysis to prove the convergence of the network to a bounded neighbourhood of the field’s time
varying extrema. We assume the time-varying field satisfies the Polyak–Łojasiewicz inequality and the
gradient is Lipschitz continuous at each iteration. Numerical studies and comparisons are provided to
support the theoretical results.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Localising the source of an unknown or uncertain scalar field
as attracted significant attention in recent years. Extremum
eeking can then be understood as driving the state of an agent or
etwork of agents to the source, and maintaining a steady state in
he neighbourhood of this optimal state in the unknown field. The
idespread applications include internal combustion engine cal-

bration (Killingsworth, Aceves, Flowers, Espinosa-Loza, & Krstic,
009), locating RF leakage (Al Issa, 2012), optimising energy dis-
ribution (Ye & Hu, 2016), and mobile sensor networks (Stankovic,
ohansson, & Stipanovic, 2011). The main challenge in general is
he approximation of the field, or a valid descent direction, with
he additional challenge in the multi-agent case of coordinating
he agents to improve the estimation. In this work, we consider
iscrete time extremum seeking, for the more classical contin-
ous time extremum seeking problem see Tan, Moase, Manzie,
ešić, and Mareels (2010) and the references therein.
Extremum seeking with a single agent primarily uses ‘‘dither’’

r other motion patterns to estimate a descent direction. In
ochran and Krstic (2009) and Zhang, Siranosian, and Krstić
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of Korea. This paper was recommended for publication in revised form by
Editor Christos G. Cassandras.
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(2007), extremum seeking with a single agent is investigated
relying only on the measurements of the scalar field, without
usage of the agent’s position. Both approaches use a sinusoidal
dither signal to estimate the gradient of the unknown field.
Using finite difference with previous measurements, tracking and
estimation error bounds for the minima of a time-varying scalar
field are derived in Shames, Selvaratnam, and Manton (2019),
along with extensive numerical studies using a single agent.
A hybrid controller is defined in Mayhew, Sanfelice, and Teel
(2007), conducting a series of line minimisations to construct
the descent direction, with stability and convergence results.
In Dürr, Stanković, Ebenbauer, and Johansson (2013) and Dürr,
Krstić, Scheinker, and Ebenbauer (2017), the authors derive an
extremum seeking controller using Lie bracket approximations
of the field, however the approach is only applied to continuous
time dynamics and in static fields.

Using a network of agents allows for a more robust esti-
mate of the gradient, as the measurements are typically as-
sumed to be simultaneous and thus unaffected by a time-varying
source. In Bıyık and Arcak (2008) a network is used with a single
leader determining the estimated gradient, employing a zero
mean dither signal, with the followers only keeping formation.
The authors show that with a fast dither and slow formation
keeping, the followers only track the gradient descent movement
of the leader. A game theoretic approach is used in Stankovic
et al. (2011) to find equilibria of each agent’s individual cost
functions, using local extremum seeking controllers with sinu-
soidal dither. Using multiple ‘‘leader’’ agents and only inter-agent
bearing measurements, the authors in Zhao and Zelazo (2015a,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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015b) stabilise a formation in arbitrary dimension with leaders
ollowing reference velocities or trajectories. In addition, using
nly bearing measurements allows for formation scaling and
otation. Using only inter-agent distances and function measure-
ents, the authors in Ghods and Krstic (2011) are able to deploy
swarm of agents which statistically cluster around the station-
ry source. In multi-agent approaches, the set of measurements
rom each agent can be used to compute an estimated gradient,
ssuming a single sensor aboard each agent (Khong, Tan, Manzie,
Nešić, 2014; Ogren, Fiorelli, & Leonard, 2004; Skobeleva, Fidan,
grinovskii, & Petersen, 2018; Vandermeulen, Guay, & McLellan,
017; Vweza, Chong, & Lee, 2015). Many of these publications
se some form of the simplex gradient (Regis, 2015), as do we
n this paper. The controller design derived in Khong et al. (2014)
ses a centralised extremum seeking controller, with access to all
f the agents’ measurements, which provides reference velocities
o each of the agents. Convergence guarantees are provided for
variety of formation and extremum seeking methods satisfy-

ng their assumptions. A centralised controller is implemented
n Ogren et al. (2004) to track the estimated gradient using least
quares estimation and refined by Kalman filtering. The agents
re tasked with formation keeping around a virtual leader, which
limbs the gradient of the unknown field. However, the problem
ormulation only considers finite manoeuvres, and the formation
ay move extremely slowly. A centralised controller and agents
ith unicycle dynamics are examined in Frihauf, Liu, and Krstic
2014), in which they provide an algorithm which does not mea-
ure the agents’ positions and provably converges to the source.
or networks of 3 agents in 2 dimensions a distributed control law
ith exponential convergence guarantees is investigated in Sko-
eleva et al. (2018). The agents in Vandermeulen et al. (2017)
se a dynamic consensus algorithm to coordinate the gradient
stimation, combined with a zero mean dither to construct a local
radient estimation. Finally, in a series of papers (Brinón-Arranz &
chenato, 2013; Brinón-Arranz, Schenato, & Seuret, 2015; Brinón-
rranz, Seuret, & Canudas-de Wit, 2011; Moore & Canudas-de
it, 2010), a group of unicycle agents performing distributed

xtremum seeking in circular formations is examined. The agents
tabilise their formation and gradient estimate using a consensus
lgorithm, and performs well even with lossy communication and
ime-varying communication networks. The algorithm described
n Brinón-Arranz et al. (2015) is implemented in Section 5 to
ompare to the results derived in this paper.
Recently, extremum seeking for sources with dynamics has re-

eived some attention. In Section 1.2 of Ariyur and Krstic (2003),
n extremum seeking algorithm using the internal model princi-
le is derived, but requires extensive internal knowledge of the
lant’s dynamics. In Poveda and Krstić (2021), the authors derive
imilar tracking results to those provided here, albeit using con-
inuous time dynamics and with the assumption of strong con-
exity using a non-smooth extremum seeking controller. Several
ecent works address time-varying extremum seeking in continu-
us time using a periodic dither algorithm (Grushkovskaya, Dürr,
benbauer, & Zuyev, 2017; Hazeleger, Haring, & van de Wouw,
020; Moshksar, Dougherty, & Guay, 2015), however these works
ssume that the source/plant variation is significantly slower than
he dither speed to allow for gradient estimation.

ontributions. This paper provides a novel analysis of multiagent
xtremum seeking focused on a time-varying source without
sing a centralised coordinator or dither motion, with discrete
ynamics. This differs from the majority of the literature, which
ssumes a static or slowly drifting scalar field. In this work,

• we allow the scalar field to be time-varying with no con-
straints on periodicity or time-scale separation;
2

• we incorporate formation control into extremum seeking
using a novel condition on the formation potential, formal-
ising the relationship between the gradient estimation and
the formation;

• we show that the agents converge to a bounded neighbour-
hood of the time-varying extrema of the field;

• we present two elliptical error bounds on the gradient ap-
proximation of a function with a Lipschitz continuous gra-
dient.

• we provide an open-source implementation of the approach
to allow for further research and validation of our results.

Finally, at each iteration, we only assume that the time varying
field is represented by a function which has Lipschitz continuous
gradient (bounded second derivative), and satisfies the Polyak–
Łojasiewicz (PL) inequality. The PL inequality assumption is also
weaker than many which are used to provide the linear con-
vergence of gradient descent algorithms, such as convexity or
quadratic growth (Karimi, Nutini, & Schmidt, 2016). For further
information on invex functions, see Ben-Israel and Mond (1986).
The authors’ previous investigation into this problem (Michael,
Zelazo, Wood, Manzie, & Shames, 2020) included a more compli-
cated control law than is presented here, with results restricted
to 2 dimensions. In this analysis, we simplify the control law,
derive stronger convergence guarantees, and broaden the method
to arbitrary dimension.

The paper is organised as follows. Section 2 is devoted to basic
assumptions on the time-varying field and agent dynamics. Sec-
tion 3 discusses the distributed control law and its performance
for extremum seeking and formation keeping. Section 4 pro-
vides an example of cooperative gradient estimation, an improve-
ment and generalisation of the results from Michael et al. (2020).
We provide numerical simulations in Section 5, and conclude in
Section 6.

2. Problem formulation

Consider a network of n agents where x(i)k ∈ Rd denotes the
osition of the ith agent for i ∈ {1, . . . , n} at iteration k. We
se bold variables throughout the paper to describe the stacked
ector for all agents, i.e. xk to denote the vector of all agents’
tates stacked vertically. Let G = (V, E) be the underlying graph
f the network with the vertex set V = {1, . . . , n} representing
he agents and the edge set E ⊆ V × V representing the commu-
ication topology. For each agent i, we define a set of neighbours
(i)

:= {j | (j, i) ∈ E} from which agent i receives information at
ach iteration step.

ssumption 1. Assume that the agent communication graph
= (V, E) is connected and time invariant.

The agents are modelled as single integrators:
(i)
k+1 = x(i)k + αp(i)k , (1)

here α is a constant.

emark 1. We assume the single integrator dynamics (1) to focus
n the time-varying field and highlight the extremum seeking
lgorithm used. However, the proposed approach may provide
aypoints for a lower level controller, which navigates on a faster
imescale until the waypoint is reached and the next measure-
ent collected. The extension from single integrator dynamics to
ore complicated dynamics including velocity saturated models
nd nonholonomic models is discussed in Zhao and Sun (2017).



E. Michael, C. Manzie, T.A. Wood et al. Automatica 152 (2023) 110948

f

g
b
q
a
n
t
2
t

A
η
|

P
c
q
s
Y
a

e
p
v
t
φ

D
p
t
g
i
(
o

f
e
e
f
f
o
O
s
p

3

c
s
o

D
R
O

d

a
f
t
g

L

At each iteration k, the time-varying field is represented by
the function fk : Rd

→ R with the non-empty minimiser set
X ∗

fk
:= argminx∈Rd fk(x). The agents can only measure the function

value at their location at each iteration, i.e. the value fk(x
(i)
k ). For

any dimension m ∈ Z+ we define the distance between a point
x ∈ Rm and a set S ⊆ Rm as d(x, S) = infy∈S ∥y − x∥, where ∥ · ∥

is the Euclidean norm. Additionally, for a function h : D → R we
will use h∗ to represent the minimum value of that function over
its domain.

Assumption 2 (Differentiability and Lipschitz Gradient). For all k ≥

0, the functions fk : Rd
→ R are at least once continuously dif-

ferentiable. The gradients are Lf −Lipschitz continuous, i.e. there
exists a positive scalar Lf such that, for all k ≥ 0, x ∈ Rd, y ∈ Rd,
∥∇fk(x) − ∇fk(y)∥ ≤ Lf ∥x − y∥, or equivalently fk(y) ≤ fk(x) +

∇fk(x)T (y − x) +
Lf
2 ∥y − x∥2.

Assumption 3 (Polyak–Łojasiewicz (PL) Condition). For all k ≥ 0,
there exists a positive scalar µf such that 1

2∥∇fk(x)∥2
≥ µf (fk(x)−

∗

k ).

The assumption that a function has an L−Lipschitz continuous
radient is equivalent to assuming the second derivative has
ounded norm, if it is twice differentiable. The PL condition re-
uires that the gradient grows faster than a quadratic as we move
way from the optimal function value. The PL condition does
ot require the minima to be unique, although it does guarantee
hat every stationary point is a global minimum (Karimi et al.,
016). In addition to Assumptions 2–3 on each fk, we quantify
he ‘‘speed’’ with which the field may vary next.

ssumption 4 (Bounded Drift in Time). There exist positive scalars
0 and η∗ such that |fk+1(x) − fk(x)| ≤ η0 for all x ∈ Rd and
f ∗

k − f ∗

k+1| ≤ η∗.

The problem of interest is given below.

roblem 5. For a network of n agents with dynamics (1) and
ommunication topology satisfying Assumption 1, let {fk} be a se-
uence of functions with a corresponding sequence of minimiser
ets {X ∗

fk
} satisfying Assumptions 2–4. Given the measurements

(i)
k = {fk(x

(j)
k ) | j ∈ N (i)

∪ {i}}, find α, p(i)k and a constant M for all
gents i ∈ V and for all k ≥ 0 such that limk→∞ d(x(i)k ,X ∗

fk
) ≤ M .

In Section 3, we will incorporate formation control into the
xtremum seeking algorithm. To this end, we use a formation
otential function φ(xk) : Rnd

→ R+ which takes the full state
ector of all agents and returns a scalar which is minimised when
he agents are in formation. Let the minimum be denoted by
∗

:= minx∈Rnd φ(x).

efinition 6. We define φ : Rnd
→ R+ to be the formation

otential function for the network, with minimisers X ∗

φ . Moreover,
he function φ(xk) (1) is continuously differentiable on Rnd with
radient which is Lipschitz continuous with constant Lφ; (2) sat-
sfies the PL inequality (Assumption 3), with constant µφ ≥ µf ;
3) has gradient component ∇x(i)k

φ(xk) which is computable using
nly the state of agent i and neighbours j ∈ Ni.

In the definition of the formation potential functions, the
irst two conditions ensure that φ(xk) shares the minimal prop-
rties that make fk amenable to analysis. The third property
nsures that the local information each agent has is sufficient
or computation of the descent direction. Navigation potential
unctions such as in De Gennaro and Jadbabaie (2006), Dimarog-
nas, Loizou, Kyriakopoulos, and Zavlanos (2006), Do (2006),
lfati-Saber and Murray (2002) and Tanner and Kumar (2005)
atisfy these assumptions. We provide an example of a formation
otential function that satisfies these assumptions in Section 5.
3

. Cooperative gradient descent

In this section we show that a network of agents cooperating
an reach a bounded neighbourhood of the minimiser set. In this
ection, for simplicity, we assume each agent uses an ε−gradient
racle at each iteration to construct a step direction.

efinition 7 (ε-gradient Oracle). Given the function fk : Rd
→

and the state of the agents xk ∈ Rd, the oracle returns
(fk, xk,N (i)) = ∇fk(x

(i)
k ) + εk.

In order to motivate the incorporation of formation control,
consider the case where p(i)k = −O(fk, xk,N (i)):

x(i)k+1 = x(i)k − α(∇fk(x
(i)
k ) + εk). (2)

We have the following lemma (proof in Appendix A) on the
convergence properties of the system.

Lemma 8. For a sequence of functions {fk} with minimiser sets {X ∗

fk
}

satisfying Assumptions 2–4, for β ∈ KL, α ∈ (0, 1
Lf

], the system with
ynamics (2) satisfies
1
2
d(x(i)k ,X ∗

fk )
2

≤ β(d(x(i)0 ,X ∗

f0 )
2, k)

+
α

2µf

k∑
t=0

(1 − αµf )k−t
∥εt∥

2
+

η0 + η∗

αµ2
f

.

(3)

Remark 9. Lemma 8 seems to imply that if α is chosen to be
1
µf

, the impact of the gradient error from steps before k is zero.
To understand why, note that the Lipschitz constant Lf and PL
constant µf satisfy the following

µf

2
d(x(i)k ,X ∗

fk )
2

≤ fk(x) − f ∗

k ≤
Lf
2
d(x(i)k ,X ∗

fk )
2, (4)

see Karimi et al. (2016) for in depth discussion regarding the
PL inequality. Requiring that α ≤

1
Lf

implies α ≤
1
µf

. Thus, if
α ≈

1
µf

, then we must have that µf ≈ Lf and fk is approximately
scaled norm as a consequence of (4). For the scaled norm

unction, the gradient dynamics (2) would take the agent directly
o the minimiser, except for the error term from the most recent
radient estimate in (3) and the drift error term η0+η∗

µf
.

From Lemma 8, the system with dynamics (2) converges to
a neighbourhood dependent on the magnitude of the gradient
error terms ∥εk∥

2 and a constant term due to drift. This result
is similar to the (β, γ )-tracking property defined in Poveda and
Krstić (2021) with the power series in terms of ∥εt∥

2 as the γ
function therein. As noted in their paper, the result from Lemma 8
resembles a semi-global practical ISS bound with respect to ∥εk∥

2

as the input. However, we can improve upon this tracking result,
as the magnitude of the gradient error ∥εt∥

2 is not bounded. An
idea behind this work is that in using function samples to esti-
mate the gradient, the error in estimation is generally a function
of the geometry of the samples taken. By incorporating formation
control into the dynamics, we are able to bound the error terms
∥εk∥

2. We show a specific example of this in Section 4, but make
minimal assumptions in this section on the specifics of how to
construct a gradient estimate from sample points.

To characterise the entire network’s behaviour, we define the
time-varying function Fk : Rnd

→ R as Fk(xk) :=
∑

i∈V fk(x
(i)
k ), and

note that Fk satisfies Assumptions 2–3 with the same constants

f , µf . The time-varying minimiser set of Fk(xk) is X ∗

Fk
=

(
X ∗

fk

)n
.

To incorporate formation control into the extremum seeking
analysis, we make the following assumption about the selection
of φ(x ).
k
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ssumption 10. The formation potential function φ : Rnd
→ R+

s in Definition 6 satisfies φ(xk) ≥
c
2

∑
i∈V ∥ε

(i)
k ∥

2, where ε
(i)
k is

efined in Definition 7, and c ∈ R+ chosen such that c > 1
µf

.

Assumption 10 formalises the relationship between the gradi-
nt estimation error and the formation. In Section 5 we provide
he example φ(xk) = φ∗

+ Lf
∑

i∈V ∥x(i) − x(j) − x̂(ij)∥2, where
the terms x̂(ij) define the optimal formation and the constant φ∗

ensures Assumption 10 is satisfied when the agents are in perfect
formation. The constant offset does not change the dynamics,
it allows φ(xk) to bound the gradient error in the convergence
analysis, see the proof of Theorem 12. This formation potential
function satisfies the assumptions in Definition 6 and Assump-
tion 10, however it requires an apriori selection of each agent’s
neighbours.

With the formation potential function defined, we define the
‘‘composite’’ function f̂k : Rnd

→ R as

f̂k(xk) := Fk(xk) + φ(xk), (5)

with corresponding minimisers in the set X ∗

f̂k
, and the new system

dynamics x(i)k+1 := x(i)k − α(∇x(i)k
f̂k + εk). Each agent can compute

the gradient ∇x(i)k
φ(xk) with only local information, so the gradient

of the composite function, being the sum of fk and φ, can be
estimated by using the same ε−gradient oracle for fk. Both Fk
and φ satisfy Assumption 2 with constants Lf , Lφ respectively, and
Assumption 3 with constants µf , µφ . Therefore, the composite
function satisfies both Assumptions 2 and 3 with constants Lf̂ :=

Lf + Lφ and µf̂ ≥ min(µf , µφ) = µf . The following lemma with
proof in Appendix B states the properties of f̂k.

Lemma 11. For the composite function f̂k, as defined in (5),
f̂ ∗

k ≤ φ∗
+

min(Lf ,Lφ )
2 d(X ∗

Fk
,X ∗

φ )
2, where f̂ ∗

k := minx∈Rnd f̂k(x) and
(X ∗

Fk
,X ∗

φ ) := min{∥x∗

φ − x∗

Fk
∥ | x∗

φ ∈ X ∗

φ , x∗

Fk
∈ X ∗

Fk
}.

In the following theorem (proof in Appendix C), we show that
by incorporating a formation potential function, which bounds
the gradient estimation error, the agents converge to a bounded
neighbourhood of the time varying minimiser set X ∗

f̂k
. Further-

more, the system does not require leaders, a separate time-scale
for the formation-keeping, or any centralised computation.

Theorem 12. For a sequence of functions {f̂k} as defined in (5) with
minimisers {X ∗

f̂k
}, the system with dynamics (2) satisfies 1

2d(x
(i)
k+1,

∗

f̂k+1
)2 ≤ β(d(x(i)0 ,X ∗

f̂0
)2, k) +

α
cµ

∑k
t=0(1 − αµ′)k−t f̂ ∗

t +
η0+η∗

αµµ′ , for

β ∈ KL, α ∈ (0, 1
Lf̂

], and µ′
= µf −

1
c . Moreover,

lim supk→∞
1
2d(x

(i)
k+1,X

∗

f̂k+1
)2 ≤

limk→∞ sup f̂ ∗k
µ′ +

η0+η∗

αµµ′ .

. Gradient estimation and error

In Section 3, we assume that each agent has access to an
stimate of ∇f (x(i)k ) + ϵ(i). In this section, we provide a method
y which agent i can estimate ∇f (x(i)k ) as well as compute an
rror bound for the estimate. The error bound and gradient es-
imation method apply to any function which satisfies Assump-
tion 2. This method is a significant improvement of our previous
work (Michael et al., 2020) and generalises to any dimension
with any number of neighbours. Furthermore, we emphasise that
the results from Section 3 are independent of this section. The
results presented here are an example of one possible method of
gradient estimation and estimation error bounding. We make the
following assumption on the neighbour set.
4

Assumption 13. For each agent i ∈ V with state x(i)k ∈ Rd, the
eighbour set cardinality satisfies |N (i)

| ≥ d. Further, the vectors
x(l)k − x(i)k }l∈N (i) span Rd.

The requirement that the agents do not arrange on a low
imensional subspace is one of the primary motivators for in-
orporating formation control, as well as preventing collisions in
pplications with physical robots. Similar requirements for the ar-
anging of agents, and controllers to achieve non-collinearity, are
iscussed in Bishop, Anderson, Fidan, Pathirana, and Mao (2009),
iu and de Queiroz (2021), Ogren et al. (2004) and Shames,
ishop, Smith, and Anderson (2013).

emark 2. In the absence of Assumption 13, it is still possible
o compute an approximate gradient using a variety of methods,
uch as in (9). However, it is not possible to bound the error of
he gradient estimate.

We define three important variables before proceeding:

s(ij)k :=
fk(x

(j)
k ) − fk(x

(i)
k )

∥x(j)k − x(i)k ∥
, v

(ij)
k :=

x(j)k − x(i)k
∥x(j)k − x(i)k ∥

,

a(ij)k :=
Lf
2

∥x(j)k − x(i)k ∥. (6)

We use s(i)k , a(i)k to denote the vertically stacked vectors of s(ij)k , a(ij)k
for all neighbours j ∈ N (i). The proof of the following lemma is
given in Appendix D.

Lemma 14. For a function fk satisfying Assumption 2 and an agent
i with neighbour set N (i) satisfying Assumption 13, there exists a

bounded polyhedron P (i)
k := {x ∈ Rd

|

[
A(i)
k

−A(i)
k

]
x ≤ b(i)k } such that

∇f (x(i)k ) ∈ P (i)
k , for A(i)

k ∈ R|N (i)
|×d and bk ∈ R2|N (i)

|×d.

From Lemma 14, there exists a bounded P (i)
k within which the

gradient ∇f (x(i)k ) must exist. In Michael et al. (2020), we restricted
the error bound analysis to 2 dimensions with 2 neighbours. The
same method is not computationally feasible in higher dimen-
sion, as it requires computation of the largest diagonal in the
d-parallelotope, which has 2d−1 diagonals. Instead, we define the
following ellipse

m(i)
k :=

√ ∑
j∈N (i)

(|s(ij)k − (g (i)
k )Tv(ij)

k | + a(ij)k )2 (7)

E (i)
k :=

⎧⎨⎩x ∈ Rd
|

A(i)
k (x − g (i)

k )

m(i)
k


2

≤ 1

⎫⎬⎭ , (8)

with g (i)
k the centre of E (i)

k , A(i)
k the matrix defined in Lemma 14,

and s(ij)k , v
(ij)
k , a(ij)k defined in (6). Define

g (i)
k := ((A(i)

k )TA(i)
k )†(A(i)

k )T s(i)k . (9)

Note that the centre of the ellipse will serve as the gradient esti-
mate for agent i, and is equivalent to the simplex gradient (Regis,
2015) of agent i and its neighbours. We use the superscript † to
denote the Moore Penrose pseudo-inverse, which is equivalent to
the inverse when Assumption 13 holds. In the following theorem
(proof in Appendix E) we present an error bound that is valid in
arbitrary dimension for any number of neighbours.

Theorem 15. For a function fk satisfying Assumption 2 and an
agent i with neighbour set N (i) satisfying Assumption 13, let P (i)

k be
the polytope defined in Lemma 14. Then P (i)

k ⊆ E (i)
k , for E (i)

k the ellipse
defined in (8) with centre g (i) defined in (9). Further, if |N (i)

| = d,
k
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nd we assume B(r, c) = {x ∈ Rd
| ∥x − c∥2 ≤ r} is the smallest

ounding ball such that P (i)
k ⊆ B(r, c), then ∥a(i)k ∥

σmax(A
(i)
k )

≤ r ≤
∥a(i)k ∥

σmin(A
(i)
k )

,

for σmax/min the largest/smallest singular values of A(i)
k and a(i)k the

vector of a(ij)k for all j ∈ N (i).

The result in Theorem 15 may be interpreted as ‘‘the radius of
the smallest bounding ball lies between the lengths of semi-major
and semi-minor axes of E (i)

k ’’.
Given that finding the smallest bounding ball which contains

a polytope is an NP hard problem, even for the relatively simple
centrally symmetric parallelotopes (Bodlaender, Gritzmann, Klee,
& Van Leeuwen, 1990), this approximation is sufficient for the
primary goal of gradient estimation. Further, this approximation
method gives the smallest 2-norm bound on the error in the
simplest case, with d neighbours distributed in a lattice around
agent i, as demonstrated in Corollary 16.

Corollary 16. If agent i has neighbour set with cardinality |N (i)
| =

d, and (v(ij)
k )Tv(il)

k = 0 for all j, l ∈ N (i) with j ̸= l, then E (i)
k as defined

in (8) is the smallest bounding ball such that P (i)
k ∈ E (i)

k .

Proof. If all neighbours are orthogonal, then A(i)
k as defined in

Lemma 14 is an orthogonal matrix, i.e. (A(i)
k )TA(i)

k = I . Therefore,
E (i) is a ball. Further, from Theorem 15, the smallest bounding ball
radius lies between the largest and smallest radii of E (i)

k , which
in this case are the same radius. Therefore, E (i) is the smallest
bounding ball containing P (i)

k .

For any number of neighbours satisfying Assumption 13, Theo-
rem 15 guarantees a gradient estimation error bound of the form

∥g (i)
k −∇fk(x

(i)
k )∥ ≤

m(i)
k

σmin(A
(i)
k )

, for g (i)
k the estimated gradient (9) and

m(i)
k as defined in (7). Note that if Assumption 13 does not hold,

then A(i)
k is a low rank matrix, with a minimal singular value of 0,

and thus the bound is undefined.

4.1. Bounding ellipse for large neighbour sets

The ellipse from (8) performs well for smaller sets of neigh-
bours, but tends to be conservative when the neighbour set is
larger than d. We provide an additional bounding ellipse here,
which shares many of the useful properties of the ellipse defined
in (8), but tends to be significantly less conservative in larger
problems. The potentially large scaling factor in the denominator
of (8) is distributed to each row, rather than applied uniformly,
which mitigates some of the inflation from redundant neighbours.
We define a matrix B(i)

k ∈ R|N (i)
|×d with the jth row B(i)

k [j] defined

B(i)
k [j] :=

(v(ij)k )T
√

|N (i)|(|s(ij)k −(g(i)k )T v
(ij)
k |+a(ij)k )

for g (i)
k ∈ Rd the centre of the

llipse. The second ellipsoidal approximation of P (i)
k can then be

defined as

Ē (i)
k :=

{
x ∈ Rd

|

B(i)
k (x − g (i)

k )
2

≤ 1
}

. (10)

It can be verified that Ē (i)
k defined in (10) also contains P (i)

k . How-
ever, the radius of the smallest bounding ball is not guaranteed
to lie between the largest and smallest eigenvalues, and thus Ē (i)

k
does not satisfy the claims of Corollary 16. For problems with
larger sets of neighbours, the authors have empirically observed
that Ē (i) seems to be a tighter approximation of P (i).
k k

5

5. Simulations

In this section we provide numerical studies to illustrate the
results from the previous sections, as well as comparison to an-
other distributed extremum seeking algorithm. For the time vary-
ing scalar field, we use convex quadratic functions fk(x) =

1
2 (x −

c(k))TQ (x−c(k))+ζ T (x−c(k))+p, for positive semi-definite Q . The

values used in the following plots are Q =

[
2.66 −0.36

−0.35 1.74

]
, ζ =

[−1.28, 4.66]T , p = 6.26, c(k) = 10 sin(
√
2k

100 ) + 10 sin(
√
3k

100 ) +
k

100 ,
ith Lf , µf the largest and smallest eigenvalues of Q respectively.
or the formation control function, we designate a set of neigh-
ours for each agent N (i) along with a corresponding set of ideal
isplacements x̂(ij). The formation potential function is then

φ(xk) = φ∗
+ Lf

∑
i∈V

∑
j∈N (i)

∥x(i) − x(j) − x̂(ij)∥2
2. (11)

For other potential functions which satisfy the definitions used
here, see De Gennaro and Jadbabaie (2006), Dimarogonas et al.
(2006), Do (2006), Olfati-Saber and Murray (2002) and Tanner
and Kumar (2005). In Michael et al. (2020) we derive the er-
ror bound on the gradient estimation in two dimensions, and
show that the estimation error is proportional to the distance
between the agents, with proportionality constant Lf , so the Lip-
schitz constant Lf and the minimum value φ∗ in (11) ensure that
φ(xk) satisfies Assumption 10. The minimum value φ∗ is chosen
as an upper bound on the gradient approximation error when
the agents are in perfect formation, derived from the gradient
estimation error bounds in Theorem 15.

The simulated methods include the composite method derived
in Section 3 using two different formations, as well as the consen-
sus for circular formations from Brinón-Arranz et al. (2015) for
comparison. For the composite method, as described in Section 3,
we use the simplex gradient as the local gradient estimation
method at each iteration (Algorithm 1).

Algorithm 1 Distributed Composite Dynamics

for k = 1, 2, ... do
for i ∈ {1, 2, ..., n} do

g (i)
k = ((A(i)

k )TA(i)
k )†(A(i)

k )T s(i)k
for i ∈ {1, 2, ..., n} do

x(i)k+1 = x(i)k −
1
L (g

(i)
k + ∇x(i)k

φ(xk))

The circular formation controller is presented in Algorithm 2,
and is written exactly as in Brinón-Arranz et al. (2015) accounting
for the notation of this paper. The parameters used within Algo-
rithm 2 are the same as used in the original paper (Brinón-Arranz
et al., 2015), in the example provided therein without noise. The
radius of the formation D = 3, the rotation velocity ω = 1,
ϵ = 0.5 and α = 1. The consensus matrix used is also the same
as Brinón-Arranz et al. (2015), with weight equal to 0.25.

Choosing six agents forces the use of a regular hexagon for
Brinón-Arranz et al. (2015). We therefore included the composite
method using a regular hexagon formation for comparison.

While the circular motion controller in Brinón-Arranz et al.
(2015) requires this hexagonal arrangement for six agents, the
framework proposed in this paper is flexible in the choice of
formation by changing the ideal displacements x̂(ij). To this end
we also include a rectangular formation obtained from the tessel-
lation of two squares along a common edge. As shown in Michael
et al. (2020), the gradient estimation error bound is a function
of the orthogonality of the neighbours as well as the distance
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Fig. 1. (a) Agent trajectories using the composite method from Section 3. (b) Formation distance from the signal source. (c) Gradient estimation error (black) and
estimation error bound of Theorem 15 (red) for each agent from (a). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
a
a

x

α

a
o

f
C

f

f

Algorithm 2 Circular Source Seeking

for i = 1, ..., n do
h(i)
0 = g̃ (i)

0 = h(i)
−1 = c(i)0 + f0(x

(i)
0 )(x(i)0 − c(i)0 )

φ(i)
= i 2πn

for k = 1, 2, ... do
for i = 1, ..., n do

g (i)
k = c(i)k +

2
D2 f (x

(i)
k )(x(i)k − c(i)k )

g̃ (i)
k = (1 − α)g̃ (i)

k−1 + αg̃ (i)
k

h̃(i)
k = h(i)

k−1 + g̃ (i)
k−1 − g̃ (i)

k−2

hk = (P ⊗ I2)(h̃k)
for i = 1, ..., n do

c(i)k = (1 − ε)c(i)k−1 + εh(i)
k

x(i)k = c(i)k + DR(φ(i)
+ ωk)

between them, so the rectangular formation will have lower
gradient estimation error than the hexagonal formation with the
same neighbour distances. Fig. 1a shows the resulting trajectories
from the composite method. We exclude the trajectories from
other methods, as they are visually identical. Instead, we include
the comparison of the tracking error 1

2d(xk+1,X ∗

f̂k+1
)2 in Fig. 1b for

ach method, including the theoretical bounds from Theorem 12.
he circular formation has higher tracking error and the rectangu-
ar and hexagonal formations using the composite method track
early identically, although the rectangular formation converges
lightly closer to the optimal value (Fig. 1b) set due to the lower
radient error as illustrated in Fig. 1c.
As the results from Section 3 generalise to any dimension, we

rovide an example in three dimensions, as well as an implemen-
ation of the extremum seeking algorithm from Section 3, at the
rovided link.1

. Conclusion

In this paper we consider a formation of agents tracking the
ptimum of a time varying scalar field with no gradient infor-
ation, in arbitrary dimension. At each iteration, the agents take
easurements, communicate with their neighbours to estimate
descent direction, and converge to a neighbourhood of the

ptimum. We derive distributed control laws which drive the
gents to a bounded neighbourhood of the optimiser set, without
he delineation of leaders/followers or the use of communica-
ion intensive consensus protocols. The method is flexible to the

1 https://tinyurl.com/yc4fzpv2.
6

choice of formation and gradient estimation method, and we
provide examples using two formations and gradient estimation
using the simplex gradient. By blending formation control with
extremum seeking, the agents are able to minimise the gradient
estimation error, improving the neighbourhood of convergence.
We concluded with numerical studies showing that the proposed
method is comparable with other extremum seeking methods,
converging to a tighter neighbourhood while being more flexible
in the choice of formation. Further research will focus on the
relaxing of the assumptions on the formation potential functions,
allowing for potential functions with non unique minima which
do not satisfy the PL inequality, and incorporating time-varying
neighbour sets.

Appendix A. Proof of Lemma 8

The agent identifying superscript i is suppressed in this proof,
s all calculations correspond to a single agent. Assumption 2
long with (2) results in fk(xk+1) − fk(xk) ≤ ∇fk(xk)T (xk+1 −

xk) +
Lf
2 ∥xk+1 − xk∥2. In turn, ∇fk(xk)T (xk+1 − xk) +

Lf
2 ∥xk+1 −

k∥
2

= −α∇fk(xk)T (∇fk(xk) + εk) +
α2Lf
2 ∥∇fk(x) + εk∥

2. Adding
and subtracting α

2 ∥εk∥
2 to complete the square leads to fk(xk+1)−

fk(xk) ≤
α
2 ∥εk∥

2
−

α
2 ∥∇fk(xk)∥2

+
α
2 (αLf − 1)∥∇fk(x) + εk∥

2. From
∈ (0, 1

Lf
], αLf −1 ≤ 0, fk(xk+1)−fk(xk) ≤ −

α
2 ∥∇fk(xk)∥2

+
α
2 ∥εk∥

2,
nd from the Polyak–Łojasiewicz bounds (Assumption 3), one
btains fk(xk+1) − fk(xk) ≤ −αµf (fk(xk) − f ∗

k ) +
α
2 ∥εk∥

2. Adding
fk+1(xk+1) − fk(xk+1) + fk(xk) − f ∗

k+1 to both sides, and using the
scalar bounds from Assumption 4: fk+1(xk+1) − f ∗

k+1 ≤ fk(xk) −

f ∗

k+1 + fk+1(xk+1) − fk(xk+1) − αµf (fk(xk) − f ∗

k ) +
α
2 ∥εk∥

2. Thus,
k+1(xk+1)− f ∗

k+1 ≤ fk(xk)− f ∗

k −αµf (fk(xk)− f ∗

k )+
α
2 ∥εk∥

2
+η∗

+η0.
onsequently,

k+1(xk+1) − f ∗

k+1 ≤ (1 − αµf )(fk(xk) − f ∗

k )

+
α

2
∥εk∥

2
+ η∗

+ η0, (A.1)

k+1(xk+1) − f ∗

k+1 ≤ (1 − αµf )k(f0(x0) − f ∗

0 )

+
α

2

k∑
t=0

(1 − αµf )k−t
∥εt∥

2

+ (η∗
+ η0)

1 − (1 − αµf )k

µf α
. (A.2)

Converting this sub-optimality bound into a bound on the con-
vergence neighbourhood, we use the relationships (4) to obtain
the final result.

https://tinyurl.com/yc4fzpv2
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ppendix B. Proof of Lemma 11

Let x∗

φ ∈ X ∗

φ and x∗

Fk
∈ X ∗

Fk
be any of the points satisfying

∥x∗

φ − x∗

Fk
∥ = d(X ∗

φ ,X ∗

Fk
). The Lipschitz properties of Fk and φ

lead to Fk(x∗

φ) ≤
Lf
2 ∥x∗

Fk
− x∗

φ∥
2

=
Lf
2 d(X

∗

φ ,X ∗

Fk
)2 and φ(x∗

Fk
) ≤

∗
+

Lφ
2 ∥x∗

Fk
−x∗

φ∥
2

= φ∗
+

Lφ
2 d(X ∗

φ ,X ∗

Fk
)2. Using these inequalities,

e may bound the values of the composite function f̂k at both x∗

φ

nd x∗

Fk
. Therefore, given that the minimiser satisfies f̂ ∗

k ≤ f̂k(x∗

Fk
)

nd f̂ ∗

k ≤ f̂k(x∗

φ), we have f̂ ∗

k ≤ φ∗
+

min(Lf ,Lφ )
2 d(X ∗

Fk
,X ∗

φ )
2.

ppendix C. Proof of Theorem 12

Note that, just as in the proof of Lemma 8, the agent iden-
ifying subscript is suppressed for readability as all calculations
re with respect to one agent. As f̂k shares all of the properties
f fk, we pick up from (A.1). Substituting the formation potential
unction 1

c φ(xk) for the error term 1
2∥εk∥

2, yields f̂k+1(xk+1) −

f̂ ∗

k+1 ≤ (1 − αµf )(f̂k(xk) − f̂ ∗

k ) +
α
c φ(xk) + η∗

+ η0. Adding the
trictly positive term α

c (fk(xk) − f̂ ∗

k + f̂ ∗

k ) to the right side of the
inequality results in f̂k+1(xk+1) − f̂ ∗

k+1 ≤ (1 − α(µf −
1
c ))(f̂k(xk) −

ˆ∗

k ) +
α
c f̂

∗

k + η∗
+ η0. Expanding the recursive relationship, with

µ′
:= µf −

1
c ≥ 0, in terms of the initial conditions leads to

f̂k+1(xk+1) − f̂ ∗

k+1 ≤ (1 − αµ′)k(f̂0(x0) − f̂ ∗

0 − η∗
− η0)

+
α

c

k∑
t=0

(1 − αµ′)k−t f̂ ∗

t +
η∗

+ η0

αµ′
. (C.1)

Using (4), as in the proof of Lemma 8, we have 1
2d(xk+1,X ∗

f̂k+1
)2 ≤

(1−αµ′)k
µf

(
Lf̂
2 d(x0,X

∗

f̂0
)2 −η∗

−η0)+ α
cµf

∑k
t=0(1−αµ′)k−t f̂ ∗

t +
η∗

+η0
µf µ′α

.

Taking the limit completes the proof.

Appendix D. Proof of Lemma 14

We begin by constructing the polyhedron P (i)
k , and showing

that ∇fk(x
(i)
k ) ∈ P (i)

k . We then show that, if Assumption 13 holds,
the polyhedron is bounded. None of the following analysis spans
iterations, so we suppress the iteration counter k for simplicity.

Consider agents x(i), x(j) ∈ Rd with j ∈ N (i). By the mean
value theorem, ∃t ∈ [0, 1] such that ∇f ((1 − t)x(i) + tx(j))Tv(ij)

=
f (x(j))−f (x(i))
∥x(j)−x(i)∥

, for v(ij) defined in (6). The right-hand-side of this
quality, which is the same as s(ij), is used to estimate the true di-
ectional derivative at x(i). Combining it with Assumption 2 gives
a bound on the error of the directional derivative estimation,

∥∇f (x(i))Tv(ij)
− s(ij)∥ ≤

Lf
2

∥x(ij)∥ = a(ij). (D.1)

We may rearrange (D.1) into a pair of inequalities

(v(ij))T∇f (x(i)) ≤ s(ij) + a(ij)

(−v(ij))T∇f (x(i)) ≤ a(ij) − s(ij).
(D.2)

The two inequalities in (D.2) represent two hyperplanes within
which the gradient is constrained. The two are oriented by the
normal vector v(ij), separated by 2a(ij), and centred on the plane
(v(ij))T x = s(ij). Define the matrix A ∈ R|N (i)

|×d, with each row
qual to v(ij) for a neighbour j ∈ N (i), and a vector b ∈ R2|N (i)

|,
ith s(ij) + a(ij) for each neighbour j ∈ N (i) stacked above a(ij) −

(ij) for each neighbour. Then the definition of the polyhedron
(i) from Lemma 14 represents the set of 2|N (i)

| inequalities
rom (D.2), and ∇f (x(i)) ∈ P (i).

To see that the polyhedron is bounded, let {e1, e2, . . . , en} be
he set of canonical basis vectors in Rd. By Assumption 13, the
7

ectors {v(ij)
}j∈N (i) span Rd, and we may express each basis vector

y a linear combination el =
∑

j∈N (i) c(j)l v(ij). We then have, for
each point x ∈ P , eTl x =

∑
j∈N (i) (c(j)l v(ij))T x ≤

∑
j∈N (i) c(j)l (s(ij) +

(ij)). Using the first inequality from (D.2). In the negative el
direction we make use of the second inequality in (D.2). Hence,
−eTl x =

∑
j∈N (i) (c(j)l (−v(ij)))T x ≤

∑
j∈N (i) c(j)l (a(ij) − s(ij)). We

herefore have that, if Assumption 13 holds, the polyhedron is
ounded in Rd.

ppendix E. Proof of Theorem 15

Once again, we suppress the iteration identifying subscript k,
s all the analysis takes place in a single iteration. Define a shifted
oordinate system y = x−g (i), with the centre of the ellipse g (i) as
the origin. The inequalities defining the interior of the polytope
P (i) from (D.2) then become

(v(ij))Ty ≤ a(ij) + s(ij) − (g (i))Tv(ij)

(−v(ij))Ty ≤ a(ij) − (s(ij) − (g (i))Tv(ij)).
(E.1)

Let y ∈ P (i) be any point within the polytope, i.e. it satisfies (E.1)
for all j ∈ N (i). Then either (yTv(ij))2 ≤ (s(ij) − (g (i))Tv(ij)

+ a(ij))2,
r (yTv(ij))2 ≤ (a(ij) − (s(ij) − (g (i))Tv(ij)))2, depending on the sign of

s(ij) − (g (i))Tv(ij). We may then use the single inequality

(yTv(ij))2 ≤ (|s(ij) − (g (i))Tv(ij)
| + a(ij))2, (E.2)

for any point y ∈ P (i). Given the matrix A(i) as defined in
Lemma 14, we have yT (A(i))TA(i)y =

∑
j∈N (i) yTv(ij)(v(ij))Ty =∑

j∈N (i) ((v(ij))Ty)2. Assuming y ∈ P (i) and applying (E.2), one
obtains yT (A(i))TA(i)y ≤

∑
j∈N (i) (|s(ij) − (g (i))Tv(ij)

| + a(ij))2. Conse-
quently, ∥A(i)y∥2

≤ (m(i)
k )2 for m(i)

k defined in (7). Therefore, each
oint in the polytope P (i) is in the ellipse (8). Note that this works
or any centre g (i), but the resulting ellipse will be differently
ized depending on the choice of g (i).
We now assume that |N (i)

| = d, and therefore P (i) is a
-parallelotope, with parallel and congruent opposite faces. The
entre of the parallelotope c is the point A(i)c = s(i), for s(i)
he vector of s(ij) for all j ∈ N (i). This is the point at which
all diagonals intersect, and are bisected, and thus must be the
centre of the smallest bounding ball B(i)(r, c). We note this point
is also returned by (9), therefore the ellipse E (i) and the smallest
bounding ball share the same centre. We may then assume,
without loss of generality, that the parallelotope is centred at the
origin. This further simplifies the definition of E (i), as the term∑

j∈N (i) (|s(ij)k − (g (i))Tv(ij)
k | + a(ij)k )2 = ∥a(i)∥2 for a(i) the vector of

a(ij) for all j ∈ N (i) as defined in (6). Let Vk ∈ Rn×n be a diagonal
matrix with Vii ∈ {−1, 1}. Then the vertices of P (i) are the points
vk = (A(i))−1Vka(i), ∀k ∈ {1, 2, 3, . . . , 2n

}.
The smallest bounding ball, by definition, includes all these

vertices and therefore r ≥ maxVk ∥(A(i))−1Vka(i)∥ ≥ σmin((A(i))−1)∥
Vka(i)∥ =

∥a(i)∥
σmax(A(i))

. Furthermore, B(c, r) radius is smaller than the
length of the semi-major axis of E (i). The length of the semi-major
axis E i corresponds to the inverse of the smallest singular value
of the shape matrix, i.e. r ≤

∥a(i)∥
σmin(A(i))

. Combining these results
completes the proof.
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ncertain systems encountered in applications such as energy systems, smart
uildings, biology, and robotics.
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